干货推荐|数据可视化的五个步骤

数据被称作是最新的商业原材料「21世纪的石油」。商业领域、研究领域、技术发展领域使用的数据总量非常巨大,并持续增长。就Elsevier而言,每年从ScienceDirect下载的文章有7亿篇,Scopus上的机构档案有8万个、研究人员档案有 1 千 3 百万,Mendeley上的研究人员档案有 3 百万。对于用户来说,从这个数据海洋中抓到关键信息越来越难。

干货推荐|数据可视化的五个步骤

数据被称作是最新的商业原材料「21世纪的石油」。商业领域、研究领域、技术发展领域使用的数据总量非常巨大,并持续增长。就Elsevier而言,每年从ScienceDirect下载的文章有7亿篇,Scopus上的机构档案有8万个、研究人员档案有 1 千 3 百万,Mendeley上的研究人员档案有 3 百万。对于用户来说,从这个数据海洋中抓到关键信息越来越难。

许多先进的可视化方式(如:网络图、3D 建模、堆叠地图)被用于特定用途,例如 3D 医疗影像、模拟城市交通、救灾监督。但无论一个可视化项目有多复杂,可视化的目的是帮助读者识别所分析的数据中的一种模式或趋势,而不是仅仅给他们提供冗长的描述,诸如:“ 2000 年 A 的利润比 B 高出 2.9 % ,尽管 2001 年 A 的利润增长了 25 % ,但 2001 年利润比 B 低 3.5 % ”。出色的可视化项目应该总结信息,并把信息组织起来,让读者的注意力集中于关键点。

对于 Elsevier’s Analytical Services 的项目而言,我们一直在寻找提升数据分析和可视化的方式。例如,在我们对于研究表现的分析中有大量关于研究合作的数据;我们为 Science Europe 提供的报告(Comparative Benchmarking of European and US Research Collaboration and Researcher Mobility) 包含跨州合作以及国际合作的数据,这些数据不适合直接用二维表和X-Y图展示。

为了探索数据背后的故事,我们使用了网络关系图来识别国家间的合作,并了解每个合作关系的影响。

本文提供一份包含五个步骤的数据可视化指南,为想用表格、图形来传播观察结果、解读分析结果的人士提供帮助。要记住,建立好的可视化项目是一个反复迭代的过程。

第1步-明确问题

开始创建一个可视化项目时,第一步是明确要回答的问题,又或者试着回答下面的问题“这个可视化项目会怎样帮助读者?”

干货推荐|数据可视化的五个步骤

表 1–数据集中的三条记录

干货推荐|数据可视化的五个步骤

图1-槽糕的可视化项目并不澄清事实,而是引人困惑。此图中包含太多变量

清晰的问题可以有助于避免数据可视化的一个常见毛病:把不相干的事物放在一起比较。假设我们有这样一个数据集(见表 1 ),其中包含一个机构的作者总数、出版物总数、引用总数和它们特定一年的增长率。

图1是一个糟糕的可视化案例,所有的变量都被包含在一张表格中。在同一张图中绘制出不同类型的多个变量,通常不是个好主意。

注意力分散的读者会被诱导着去比较不相干的变量。

比如,观察出所有机构的作者总数都少于出版物总数,这没有任何意义,又或者发现 Athena University、Bravo University、Delta Institution 三个研究机构的出版物总数依次增长,也没有意义。拥挤的图表难以阅读、难以处理。在有多个 Y 轴时就是如此,哪个变量对应哪个轴通常不清晰。简而言之,槽糕的可视化项目并不澄清事实而是引人困惑。

第2步-从基本的可视化着手

确定可视化项目的目标后,下一步是建立一个基本的图形。它可能是饼图、线图、流程图、散点图、表面图、地图、网络图等等,取决于手头的数据是什么样子。在明确图表该传达的核心信息时,需要明确以下几件事:

  1. 我们试图绘制什么变量?
  2. X 轴和轴代表什么?
  3. 数据点的大小有什么含义吗?
  4. 颜色有什么含义吗?
  5. 我们试图确定与时间有关趋势,还是变量之间的关系?

有些人使用不同类型的图表实现相同目标,但并不推荐这样做。不同类型的数据各自有其最适合的图表类型。

比如,线形图最适合表现与时间有关的趋势,亦或是两个变量的潜在关系。当数据集中的数据点过多时,使用散点图进行可视化会比较容易。

此外,直方图展示数据的分布。直方图的形状可能会根据不同组距改变,见图 2 。(在绘制直方图时,本质是在绘制柱状图来展示特定范围内有多少数据点。这个范围叫做组距。)

干货推荐|数据可视化的五个步骤

图2-当组距变化,直方图的形状也发生变化。

组距太窄会导致起伏过多,让读者只盯着树木却看不到整个森林。此外,你会发现,在完成下一个步骤以后,你可能会想要修改或更换图表类型。

第3步-确定最能提供信息指标

假设我们有另一个关于某研究机构出版物数量的数据库(见表 2 )。可视化过程中最关键的步骤是充分了解数据库以及每个变量的含义。从表格中可以看出,在 A 领域(Subject A),此机构出版了 633 篇文章,占此机构全部文章的 39% ;相同时间内全球此领域共出版了 27738 篇文章,占全球总量的 44% 。 注意,B 列中的百分比累计超过 100% ,因为有些文章被标记为属于多个领域。

在这个例子中,我们想了解此机构在各个领域发表了多少文章。出版数量是一个有用的指标,不仅如此,与下面这些指标对照会呈现出更多信息:

  • 此领域的研究成果总量( B 列)
  • 此领域的全球活跃程度

由此,我们可以确定一个相对活跃指标,1.0 代表全球平均活跃程度。高于 1.0 代表高于全球水平,低于 1.0 代表低于全球水平。用 B 列的数据除以 D 列,得到这个新的指标,见表 2 。

干货推荐|数据可视化的五个步骤

表2-用B列的数据除以D列,得到新的指标:相对活跃程度(E栏)。

第4步-选择正确的图表类型

现在我们可以用雷达图来比较相对活跃指数,并着重观察指数最高/最低的研究领域。例如,此机构在 G 领域的相对活跃指数最高( 1.8 ),但是,此领域的全球总量远远小于其他领域(见图 3 )。雷达图的另一个局限是,它暗示各轴之间存在关系,而在本案例中这关系并不存在(各领域并不相互关联)。

干货推荐|数据可视化的五个步骤

图3-相对活跃指数雷达图

数据的规范化(如本例中的相对活跃指数)是一个很常见也很有效的数据转换方法,但需要基于帮助读者得出正确结论的目的使用。如在此例中,仅仅发现目标机构对某个小领域非常重视没太大意义。

我们可以把出版量和活跃程度在同一个图表中展示,以理解各领域的活跃程度。使用图 4 的玫瑰图,各块的面积表示文章数量,半径长短表示相对活跃指数。注意在此例中,半径轴是二次的(而图 3 中是典型线性的)。图中可以看出,B 领域十分突出,拥有最大的数量(由面积表示)和最高的相对活跃程度(由半径长度表示)。

干货推荐|数据可视化的五个步骤

图4-玫瑰图。此图中各块面积表示文章数量,半径长短表示相对活跃指数(E列)。

第5步-将注意力引向关键信息

用肉眼衡量半径长度可能并不容易。由于在本例中,相对活跃指数的 1.0 代表此领域的全球活跃程度,我们可以通过给出 1.0 的参照值来引导读者,见图 5 。这样很容易看出哪些领域的半径超出参考线。

干货推荐|数据可视化的五个步骤

图5-带有相对活跃指数参考线的玫瑰图

我们还可以使用颜色帮助读者识别出版物最多的领域。如图例所示,一块的颜色深浅由出版物数量决定。为了便于识别,我们还可以把各领域名称作为标签(见图 6 )。

干货推荐|数据可视化的五个步骤

图6-玫瑰图中的颜色深浅代表出版物数量(颜色越亮,出版物越多)

结论

数据可视化的方法有很多。新的工具和图表类型不断出现,每种都试图创造出比之前更有吸引力、更有利于传播信息的图表。我们的建议是记住以下原则:可视化项目应该去总结关键信息并使之更清晰直白,而不应该令人困惑,或用大量的信息让读者的大脑超载。

 

原作者:Georgin Lau and Lei Pan

翻译:王鹏宇

via:Datartisan数据工匠

原文地址:http://www.36dsj.com/archives/39986

原创文章,作者:Catherine,如若转载,请注明出处:https://www.iamue.com/30542/

(0)
CatherineCatherine
上一篇 2017-05-29 08:28
下一篇 2017-05-29 10:25

相关推荐

  • 如何向面试官介绍「交互设计」作品?这篇绝对是最全面的!

    招聘季,无论新人还是交互老鸟,都将在「互联网公司鄙视链」上挣扎翻滚。面试官常会要求:介绍一下你的作品…..如何展示交互作品这件事,这篇文章系统总结一下。

    2017-05-25
  • 2018年3月交互设计招聘内推信息

    58体验设计团队——北京 交互视觉用研岗都有,欢迎各位朋友自荐或推荐,非常感谢。 简历可发给uxd-job@58ganji.com  是一直活泼可爱的团队~ 对于男设计师来说:100人里65%是女生 其中单身有1/4 机会还是很大的 阿里口…

    交互专题 2018-03-09
  • 交互设计面试官想了解什么,你知道吗?

    丝路视觉新朋友可点击上方蓝字关注年后又是一波跳槽季,对于即将走出校园的小伙伴来说,春招也马上要开始了。今天推荐的这篇文章包含了校招过程中的所有技巧和秘籍,绝对良心面经。已有一些工作经历、现在想跳槽的朋友们也可以参考一下,不仅可以为准备的面试答案查缺补漏,也可以给心中留一个底。与面试官进行的交谈,每一句话都会影响面试官对你的判断,因此每次讲话都力求向面试官证明你是合适的人选,如果他无法从你身上获取到有效信息,自然会将你淘汰。然而很多同学在...

    2018-02-03
  • 9个关于设计的关键要素,帮你设计出更加优秀的作品

    之所以把设计和Jalebi放在一起说,就是因为设计本身其实和制作Jalebi如出一辙,设计师的经验和对设计投入的思考才是核心所在,而两者结合之下则往往能产生一些颇有价值的指导思想。Above examples are of apps with the same domain and you can judge which one is looking better.A good example visual typo hierarchy in the above graphic .

    ——Source: SuperDryCleartrip is a very good example of what I am talking about……

    2017-05-17
  • 化繁为简——网易云音乐WP1.0设计思考

    项目背景 Windows Phone一直是各家公司缺少投入的平台,WP用户不得不经常面对一个成熟的APP到了WP上就变得各种功能缺失、体验支离破碎,他们渴望应用软件在体验 上能和其它平台一样受到同等重视,音乐APP也不例外。…

    2014-10-31
  • 总结|2017年的5个网页设计趋势

    几何图案与全屏背景图结合、灰色的高级用法、色彩叠加……这篇总结的这5个网页设计趋势,其实在年底就初现端倪,所以2017年大面积运用几乎势在必行,想不落人后记得打开阅读哟。

    2017-05-08
  • 阿里设计师实战案例解读内容化设计

      前言 如果说好的产品是运营出来的,那么内容作为用户体验中的重要部分不容忽视。然而我们在设计中经常缺乏内容体验的意识。借着第十三届用户体验大会User Friendly 2016的分享,手淘的设计师和业内的同学们一起做…

    交互专题 2017-08-07
  • 撕逼时,要不要说“我觉得…”?

    你可能也碰到过类似的场景,一个撕逼的场景:“考虑到用户的使用场景,用户到这个页面,更关注信息B,而不是A,我觉得,这个页面,更应该突出信息B…”。反驳的声音说:“你觉得,只是你的个人感受、猜测而已,真实的场景和情况,并不是你觉得的那样…”

    2017-05-21
  • 2018酒店行业该如何提高用户体验

    大数据人工智能原本只以为会在IT互联网界出现的词,近几年被各个领域广泛应用,酒店同样也不会例外,目前酒店应用比较多的是在对客服务上,收集客人的喜好,制定个性化的服务,在酒店的其他方面提到甚少。接下来我们谈一谈新技术真正对酒店有什么影响,酒店可以在那些方面应用到新技术。在之前很多酒店都在搜集客人的反馈信息,喜好以及客人的消费习惯,用以提高用户体验,在酒店长期运作的过程中,因为人力成本的控制,人员流动大,导致很多酒店已经慢慢忽略了这份工作,...

    2018-02-01
  • 移动端搜索功能设计:3个阶段解析搜索流程设计要点

    这篇文章笔者想和大家聊一聊有关搜索功能的设计,搜索功能是每个内容型APP的核心,它的易用性决定了用户是否能从APP里快速找到自己想找的内容,那么决定搜索体验好坏的关键点又是什么呢?这里我总结了两点,“操作的易用性”和“结果的准确性”。看似简单的两点却有很多的学问,笔者把搜索的交互流程划分成三个关键阶段,“搜索前、搜索中及搜索后”,接下来将从这三个阶段逐一分析整个搜索流程中的相关设计。

    2017-05-11