A/B 测试基础&实例

什么是A/B测试?


A/B测试简单来讲是在两个或多个产品的优化方案中选出最优方案的方法。 例如,期望优化产品的某个特性——通常是期望某项数据提升时,需要对产品某处进行调整。 对此可以提出若干版本,但是现有的理论无法判定哪种方案最佳,此时可将这几个版本同时上线, 以小流量运行一段时间获得数据反馈,来判断版本优劣。

1461235308-8952-excl.06a93f36

为什么要进行A/B测试?


A/B测试可以使你在现有流量中获取更高的收益。每个产品都拥有自己的目标,也就是这个产品存在的意义。

1461235307-7411-shop.a6076fd7希望访客最终产生购买行为

1461235310-5878-media.01e87bd3希望获得更多的广告点击或者付费

1461235311-4544-inst.44d14cb6希望拥有尽可能高的留存

每个产品都希望访客最终可以转化成为有价值的用户。 去获取新的用户和流量多数时候会耗费很高的成本,但是如果将现有的流量尽可能高的变现,成本会小得多。 这种转化的概率统称为“转化率”。在A/B测试中,设定A/B版本进行对比试验,即可得知哪个版本拥有更高的转化率。

1461235313-4465-traffic.8f750309

如何进行A/B测试?


 在快速上线的过程中,A/B测试是一个帮助我们快速试错的一种实验的方法。在统计学上,其实是Hypothesis Testing(假设测试)的一种形式。它能够帮我们了解我们对产品的改动,例如一个新的功能,是否能够吸引更多用户、让用户更加喜欢、产生更大的效益等。

A/B测试方法的基本概括就是,将用户分为两组,一组使用旧产品(或旧功能),一组使用新的。然后对比两个用户组,通过数据来分析,新的功能究竟是好是坏。没错,就跟小学的时候做的那些有控制组、实验组的自然科学实验一样一样的。

A/B测试的具体实施方式有很多种。桌面应用、网站、手机应用都有一些不同的A/B测试方法。本文中以网站的A/B测试为例来介绍。

一个严谨的A/B测试正确姿势如下:

1461235315-7705-wen.ea49bced

首先,提出问题
为什么我的产品转化率不够高?

1461235319-2102-comper.fd3f79eb

建立假设
比如,让“下一步”按钮更明显一些,也许转化率会更高,将原版作为A版本,设计一个优化“下一步”按钮的方案,作为B版本。

1461235317-8315-AB.89eb6be9

准备测试方案
计算一下如果要验证这个结论,每个版本需要多少流量。※至此,明确了A/B测试的几个要素:优化指标(转化率)、A/B版本中的变量和实验流量。

1461235318-5605-datas.92ca9f2c

验证
A/B版本同时上线,在属性相同的用户群中运行并获取数据。

1461235320-7878-f-t.5d081cb4

分析数据得出初步结果
如果B版本成功提高了转化率,那么这个假设得到了验证。否则,需要返回第三步来做出其他假设。

1461235322-8906-show.971d0ff6

把这个结果分享给大家
给市场、用研、运营同学分享这个结论。

在互联网行业里面工作,能给我带来的一个乐趣就是“快”。天下武功,唯快不破。我们可以轻易地做到一天三次以上的产品更新速度,这是和许多传统行业的区别之一。如何利用好这个优势,在我眼里成为了产品发展的关键所在。

我们以天猫的购物车为例,现在的天猫购物车中,结算按钮是在最下方的。这里我浏览器窗口的高度弄得比较小,所以看起来结算按钮和物品之间距离很近,但是实际上他们之间是有很大的距离的。

天猫购物车

现在我就可以提出一个想法,让我们试着把结算按钮移动到购物车的最上方,或许可以增加这个结算按钮的点击穿透率(CTR,Click Through Rate),从而可能提高转化率(CR,Conversion Rate)。

小知识&题外话:CTR简单说即点击该结算按钮的次数占该页面的总访问次数的百分比。例如,在2014年10月25日这一天,一共有200万人打开了这个购物车的页面,其中有20万人点击“结算”并成功到达了结算页面,那么这一天该按钮的CTR即为20万/200万乘以100%,即10%
CR,简单来说就是实际进行了消费活动的顾客占总访客数量的百分比。

天猫购物车新设计

现在,我们就有了两个版本的购物车。一个是现有版本,我们称之为A;一个是我新设计的版本,我们称之为B。我们的目标是想要知道,B的效果是否比A来得好。

那么,为了衡量效果,我们就要明确我们要观测的数据。这里,我们选择CTR和CR作为我们的观测数据。如果新设计上线后,这两个数据如果有上升,那么就代表着这个新的设计是一个很好的改进。

按用户(流量)划分控制组和实验组

接下来我们将用户划分成用户组和实验组。按用户分组也称作按流量分组。例如,我们可以让50%来到天猫的用户看到旧的设计,另外50%来到天猫的用户看到新的设计。

需要注意的是,我们必须尽量保证同一个用户在实验期间所能看到的是同一个设计。如果他刚才看到的结算按钮在下面,现在又看到结算按钮在上面了,那么对他而言一定是一件很困惑的事情。

请求分桶

小知识:划分组的过程由服务器的特定算法完成,这类算法我们一般称之为分桶算法(Bucketing Algorithm)。分桶也就是分组,是一个概念。对网站请求进行分桶的那部分程序叫做请求分桶(Request Bucketer)。

按页面划分控制组和实验组

有的时候,按照用户分组会存在一些问题。例如,如果你的实验是关于搜索引擎优化(SEO)的,那么可能就需要按照页面来划分控制组和实验组。例如,对于50%的购物车页面,无论谁访问,都是看到原来的设计;对于其他50%的购物车页面,则是新的设计。

SEO的基本目的就是让搜索引擎更好搜索到网站的页面,所以我们希望在实验期间每次对于同一个页面,搜索引擎看到的结果都是一致的。这样才可以对比两种不同设计的页面对于搜索引擎爬虫的效果孰优孰劣。

页面分桶

典型的SEO优化包括对标题的优化。例如,控制组中的页面标题是放入了商家的宝贝数量,例如“艾迪达斯旗舰店 - 1020件商品 - 上天猫,就购了!”;实验组中的页面标题是放入了商家上传的照片的数量,例如“艾迪达斯旗舰店 - 4558张照片 - 上天猫,就购了!”。别小看这样细小的变化,业界的确有不少成功的SEO优化就是由细小的变化所产生的。

按页面划分的细节问题

按页面划分的时候,如果仅仅划分为两个组,可能会出现一些问题。比如,如果对天猫商家页面进行按页面分组,如果在实验期间正好某商家自身发生了非常疯狂的大促,那么它所在的那一组的数据可能会直线飙升。这就可能引起我们的误解,我们可能以为这是由于实验本身造成的影响,于是造成了错误判断。

简单的解决方法就是划分为四个组,而不是两个组:

  • 控制组1
  • 控制组2
  • 实验组1
  • 实验组2

如果在实验组1里面的某个商家因为其自身原因,数据飙升,带动了整个实验组1的数据飙升。但是,实验组2的数据却没有什么很大的起色的话,那么说明是商家自身原因导致,而非新的功能带来的影响。

分组的比例分配

分组的比例分配不一定要是50%:50%,因为有些新功能是很可能造成不好的影响的,特别是试用一些新技术。在流量或者页面很多的情况下,哪怕是99%:1%的比例分配也是可以的,因为在后面还有采样的过程。对于淘宝,就算是1%的流量也是非常巨大的,所以样本总量(population)够大,对1%流量采样和50%的流量采样一般是没什么区别的。

互斥实验

有些实验之间是互斥的,可能会互相影响结果。例如,实验A的存在会让实验B的效果适得其反。

简单的方法就是开辟“泳道”(swimlane)。就好像在游泳的时候,你在你的泳道游你的蛙泳,我在我的泳道游我的自由泳,咱们互不侵犯。拿按页面划分来举例,我们可以让实验A所用的所有页面占网站总页面的20%,实验B占据20%,并且实验A和实验B所涉及的页面互不相交(即互斥)。

泳道划分

在A/B测试中要注意什么

不要过早下定论。一个实验上线后,不能急着在两三天内就下定论。统计学上有一个概念叫做statistical confidence,有专门的方法可以用于计算。只有当计算出来的数据达到一定阀值的时候,我们才可以(从统计学上)说这个新的设计是成功或者失败的。我们可以用现成的计算器来计算。

尽量减小偏差(bias)。例如,如果你对页面进行分组采用的方式是让卖拐杖的页面成为控制组、不卖拐杖的页面成为实验组,那这里面就会产生很大的偏差。因为一般买拐杖都是老年人在买,或者中年的子女在帮老人买,青少年不太可能去买。所以,两组之间就会产生很大的用户的性格的差异,对实验结果的影响就可能很不好了。

所有的产品都可以进行A/B测试

A/B测试允许我们快速演进我们的产品。我认为,除了互联网行业之外,其他行业也应该学习快速进行A/B测试的思想,创造更好的、质量更高的产品。

A/B测试的场景很多,不同的A/B测试方法每天都在帮我们创建更好的世界。建议大家可以上网搜索,并和身边的人一起讨论如何应用假设测试打造更好的产品。

原创文章,作者:ioued,如若转载,请注明出处:https://www.iamue.com/14302/

(0)
iouedioued
上一篇 2016-04-19 22:43
下一篇 2016-04-21 18:47

相关推荐

  • 关于Facebook的未来,31岁的扎克伯格还有三条锦囊妙计

    Facebook早已不再是一家社交媒体,过去三年,Facebook不仅完成了IPO,还先后完成多个震撼业界的收购举措,并在人工智能、虚拟现实、无人机领域广泛布局,这一切的背后都让我们看到扎克伯格对社交巨人未来发展的思考…

    2015-11-21
  • 行业最佳实践 | 冷兔:用做产品的思维做表情

    冷兔创意工作室是一个年轻而又注重创意的团队。冷兔的小伙伴们在这里创作好用的聊天表情,构思好笑的漫画,绘制充满想象力的艺术画作,以及制造更多有趣的产品。冷兔创意工作室的核心工作是生产快乐,并通过冷兔来…

    2016-10-26
  • 怎样做用户体验运营?

    引言:edwin是微信最初10员工之一,有丰富的后台开发经验,加入团队后承担了微信用户平台实验系统的研发工作。数据能力和实验能力是运营的基础,他带领几位从终端转岗到后台开发的同学,为用户体验运营奠定核心基础…

    2016-04-21
  • 如何界定用户运营工作的有效性?你真的知道么?

    用户运营工作有其固有的特殊性,关注点落脚在用户上。它的工作节奏是一个量变到质变的过程,说白了就是需要从一点点开始积累,往往很多工作都需要从零做起。它不像很多市场工作,是一个循环往复的过程。 运营人员的…

    2016-05-12
  • 核心价值观的力量

    [alert_info] 原作者:Bastian Lehmann 英文原文: The Power of Core Values IAMUE作者: 黄韦 [/alert_info]   顺丰确认上市,在这个巨头林立的物流行业,是否还有别的机会呢? 本次给小编大家带来美国同城按…

    2016-02-28
  • 腾讯高级产品经理干货分享:运营就像追妹子,你不仅要活好,还要走心,有耐心

    陈婷婷:互联网运营8年,腾讯高级产品经理,现任QQ空间功能、创新项目运营负责人。 戳下方视频,学习怎样像追妹子一样做好运营? (视频时长共07:48) 千百年来,有一件事男生女生——当然更多的是男生——都会做,那就…

    2016-04-08
  • 《上瘾:让用户养成使用习惯的四大产品逻辑》

    最近在看这本书,从产品、设计、运营多个角度都可以很多收获,我在看第二遍了,与第一遍阅读有不同的感受,作为设计师更需要了解你的设计是怎么影响用户的“触发”的。 这涉及到 :人性、情感、路径等因素决定了用户…

    2017-06-09
  • 美团外卖如何后来居上,短短两年从0到300万单?

    撰稿| 周欣  李志刚美团外卖如何后来居上,短短两年从0到300万单?新美大CEO王兴来源:视觉中国;制图:孟繁祥6%。2014年12月,美团外卖日均订单150万单,距离产品正式上线刚好一年,来自美团团购的订单占比6%。 …

    2016-04-18
  • 运营如何在2年内从月薪3000升到30000

    写这篇文章 的前一周,我和几个老同事聚会。一班老友聚会,感慨万千,唏嘘不已。同样一堆老兄弟,同一个起跑线,有人年收入过百万,有人至今月薪不过5000。同样的老兄弟,差别为什么这么大呢? 这个是我这篇文章的…

    产品运营 2016-01-28
  • 史上最全微信运营架构思维导图

    这些架构图有啥用? 如果你是一名新手运营,这个思维导图会让你系统性的了解你的工作有哪些,为你提供指导、查缺补漏。所以,如果一次无法记牢,那就收藏备用吧。   来自人人都是产品经理

    2015-09-14